dm-control soccer (multi-agent)#
Installation#
pip install shimmy[dm-control]
Usage (Multi agent)#
from dm_control.locomotion import soccer as dm_soccer
from shimmy.dm_control_multiagent_compatibility import (
DmControlMultiAgentCompatibilityV0,
)
walker_type = dm_soccer.WalkerType.BOXHEAD,
env = dm_soccer.load(
team_size=2,
time_limit=10.0,
disable_walker_contacts=False,
enable_field_box=True,
terminate_on_goal=False,
walker_type=walker_type,
)
env = DmControlMultiAgentCompatibilityV0(env)
Class Description#
- class shimmy.dm_control_multiagent_compatibility.DmControlMultiAgentCompatibilityV0(env: dm_control.composer.Environment, render_mode: str | None = None)#
This compatibility wrapper converts multi-agent dm-control environments, primarily soccer, into a Pettingzoo environment.
Dm-control is DeepMindās software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. This compatibility wrapper converts a dm-control environment into a gymnasium environment.
- metadata: Dict[str, Any] = {'render_modes': ['human']}#
- possible_agents: List[AgentID]#
- observation_space(agent)#
The observation space for agent.
- action_space(agent)#
The action space for agent.
- render()#
Renders the environment.
- close()#
Closes the environment.
- reset(seed=None, return_info=False, options=None)#
Resets the dm-control environment.
- step(actions)#
Steps through all agents with the actions.
- agents: List[AgentID]#
- observation_spaces: Dict[AgentID, gymnasium.spaces.Space]#
- action_spaces: Dict[AgentID, gymnasium.spaces.Space]#